Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present high-resolution WIYN/NEID echelle spectroscopy (R ≈ 70,000) of the supernova (SN) 2023ixf in M101, obtained 1.51 to 18.51 days after explosion over nine epochs. Daily monitoring for the first 4 days after explosion shows narrow emission features (≤200 km s−1), exhibiting predominantly blueshifted velocities that rapidly weaken, broaden, and vanish in a manner consistent with radiative acceleration and the SN shock eventually overrunning or enveloping the full extent of the dense circumstellar medium (CSM). The most rapid evolution is in the Heiemission, which is visible on day 1.51 but disappears by day 2.62. We measure the maximum pre-SN speed of Heito be 25 km s−1, where the error is attributable to the uncertainty in how much the Heihad already been radiatively accelerated and to measurement of the emission-line profile. The radiative acceleration of CSM is likely driven by the shock–CSM interaction, and the CSM is accelerated to ≥200 km s−1before being completely swept up by the SN shock to ∼2000 km s−1. We compare the observed spectra with spherically symmetric r1w6bHERACLES/CMFGENmodel spectra and find the line evolution to generally be consistent with radiative acceleration, optical depth effects, and evolving ionization state. The progenitor of SN 2023ixf underwent an enhanced mass-loss phase ≳4 yr prior to core collapse, creating a dense, asymmetric CSM region extending out to approximatelyrCSM = 3.7 × 1014(vshock/9500 km s−1) cm.more » « lessFree, publicly-accessible full text available April 28, 2026
- 
            The superluminous Type IIn supernova ASASSN-15ua: part of a continuum in extreme precursor mass-lossABSTRACT We present a series of ground-based photometry and spectroscopy of the superluminous Type IIn supernova (SN) ASASSN-15ua, which shows evidence for strong interaction with pre-existing dense circumstellar material (CSM). Our observations constrain the speed, mass-loss rate, and extent of the progenitor wind shortly before explosion. A narrow P Cygni absorption component reveals a progenitor wind speed of ∼100 km s−1. As observed in previous SNe IIn, the intermediate-width H α emission became more asymmetric and blueshifted over time, suggesting either asymmetric CSM, an asymmetric explosion, or increasing selective extinction from dust within the post-shock shell or SN ejecta. Based on the CSM radius and speed, we find that the progenitor suffered extreme eruptive mass-loss with a rate of 0.1–1 M⊙ yr−1 during the ∼12 yr immediately before the death of the star that imparted ∼ 1048 erg of kinetic energy to the CSM. Integrating its V-band light curve over the first 170 d after discovery, we find that ASASSN-15ua radiated at least 3 × 1050 erg in visual light alone, giving a lower limit to the total radiated energy that may have approached 1051 erg. ASASSN-15ua exhibits many similarities to two well-studied superluminous SNe IIn: SN 2006tf and SN 2010jl. Based on a detailed comparison of these three, we find that ASASSN-15ua falls in between these two events in a wide variety of observed properties and derived physical parameters, illustrating a continuum of behaviour across superluminous SNe IIn.more » « less
- 
            Abstract JWST observations of the young Galactic supernova remnant Cassiopeia A revealed an unexpected structure seen as a green emission feature in colored composite MIRI F1130W and F1280W images—hence dubbed the Green Monster—that stretches across the central parts of the remnant in projection. Combining the kinematic information from NIRSpec and the MIRI Medium Resolution Spectrograph with the multiwavelength imaging from NIRCam and MIRI, we associate the Green Monster with circumstellar material (CSM) that was lost during an asymmetric mass-loss phase. MIRI images are dominated by dust emission, but their spectra show emission lines from Ne, H, and Fe with low radial velocities indicative of a CSM nature. An X-ray analysis of this feature in a companion paper supports its CSM nature and detects significant blueshifting, thereby placing the Green Monster on the nearside, in front of the Cas A supernova remnant. The most striking features of the Green Monster are dozens of almost perfectly circular 1″–3″ sized holes, most likely created by interaction between high-velocity supernova ejecta material and the CSM. Further investigation is needed to understand whether these holes were formed by small 8000–10,500 km s−1N-rich ejecta knots that penetrated and advanced out ahead of the remnant’s 5000–6000 km s−1outer blast wave or by narrow ejecta fingers that protrude into the forward-shocked CSM. The detection of the Green Monster provides further evidence of the highly asymmetric mass loss that Cas A’s progenitor star underwent prior to its explosion.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract We report multiwavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka “Barbie”) identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak-observed pseudo-bolometric luminosity of log( L max / [ erg s − 1 ] ) = 45.7 from slowly fading ztf- g and ztf- r light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations ( g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si iii ] λ 1892, C iii ] λ 1909, and C ii ] λ 2325. Typical nebular lines in Active Galactic Nucleus (AGN) spectra from ions such as [O ii ] and [O iii ] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a ≈14 M ⊙ star and a supermassive black hole of mass M BH ∼ 10 8 M ⊙ . Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy.more » « less
- 
            Abstract We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
